

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2016
Homework 4 – While Loops

Assignment: Homework 4 – While Loops
Due Date: Wednesday, October 5th, 2016 by 8:59:59 PM
Value: 40 points

Collaboration: For Homework 4, collaboration is not allowed – you must
work individually. You may still come to office hours for help, but you may not
work with any other CMSC 201 students.

Your collaboration statement should state that
Collaboration was not allowed on this assignment.

Make sure that you have a complete file header comment at the top of each
file, and that all of the information is correctly filled out.

File: FILENAME.py

Author: YOUR NAME

Date: THE DATE

Section: YOUR DISCUSSION SECTION NUMBER

E-mail: YOUR_EMAIL@umbc.edu

Description:

DESCRIPTION OF WHAT THE PROGRAM DOES

Collaboration:

COLLABORATION STATEMENT GOES HERE

As a reminder, you are to complete these homeworks only with material
that we have covered in class when the homework comes out. If you are
unsure if a method you would like to use is allowed, ask one of the instructors
or TAs for clarification. (This means that you cannot use for loops for this

assignment – you may only use while loops.)

CMSC 201 – Computer Science I for Majors Page 2

Homework 4 is designed to help you practice using while loops, branching

selection structures, Boolean logic, and printing. More importantly, you will
be solving problems using algorithms you create and code yourself.

Remember to enable Python 3 before running and testing your code:
 scl enable python33 bash

Instructions
In this homework, we will be doing a series of exercises designed to make
you practice using while and for loops, control statements like

if/else, print() statements, and algorithmic thinking. Each one of these

exercises should be in a separate python file. For this assignment, you may
assume that all the input you get will be of the correct type (e.g., if you ask
the user for a whole number, they will give you an integer).

For this assignment, you'll need to follow the class coding standards, a
set of rules designed to make your code clear and readable. The class coding
standards are on the website, linked at the top of the “Assignments” page.
You can also access them directly via this URL (http://goo.gl/yEoGfC).

NOTE: You must use main() as seen in your lab2.py file, and as

discussed in class.

At the end, your Homework 4 files must run without any errors.

Details
Homework 4 is broken up into four separate parts. Make sure to complete
all 4 parts.

NOTE: Your filenames for this homework
must match the given ones exactly.
And remember, filenames are case sensitive!

http://goo.gl/yEoGfC

CMSC 201 – Computer Science I for Majors Page 3

Questions
Each question is worth the indicated number of points. Following the coding
standards, having complete file headers, and having correctly named files is
worth 6 points.

hw4_part1.py (Worth 8 points)
For this part of the homework you will write code to get valid input from the
user. Your program will need to continue to re-prompt them until they provide
a username that is at least 4 characters long, and no more than 12
characters long.

Your program must tell the user whether each of their chosen usernames is
too short or too long, as well as reminding them of what is an acceptable
username length.

Here is some sample output, with the user input in blue.
(Yours does not have to match this exactly, but it should be similar.)

bash-4.1$ python hw4_part1.py

Please enter your username: xyz

That username is too short.

The username must be between 4 and 12 characters.

Please enter a new username: maximillian17

That username is too long.

The username must be between 4 and 12 characters.

Please enter a new username: morgan4

Thank you for choosing the username morgan4

(HINT: The minimum and maximum lengths should be constants, so that you
can easily change them later.)

CMSC 201 – Computer Science I for Majors Page 4

hw4_part2.py (Worth 5 points)
For this part, you are going to write a program that is able to compute
modulus without using the mod operator.

Your program should ask the user for two numbers, and should compute the
answer to firstNum % secondNum. This should work even if the first

number is smaller than the second. Your program should then output the full
equation, including the answer, to the user.

For input, you may assume that the user will enter an integer greater than 0.

Here is some sample output, with the user input in blue.
(Yours does not have to match this exactly, but it should be similar.)

bash-4.1$ python hw4_part2.py

Please enter the first number: 15

Please enter the second number: 8

15 % 8 = 7

bash-4.1$ python hw4_part2.py

Please enter the first number: 33779

Please enter the second number: 8

33779 % 8 = 3

(HINT: This sample output doesn’t show every possibility, so make sure to do
additional testing yourself. Remember that you can always discuss how to
test your code with other students, even on “Individual Work Only”
assignments like Homework 4.)

CMSC 201 – Computer Science I for Majors Page 5

hw4_part3.py (Worth 12 points)
Next you are going to create an updated, more sophisticated version of the
username length checker from Part 1.

(WARNING: This part of the homework is the most challenging, so budget
plenty of time and brain power. And read the instructions carefully!)

For this updated version, your program is going to follow some of the rules of
actual UMBC usernames:

1. Usernames cannot be less than two characters long.
2. Usernames cannot be longer than eight characters.
3. Usernames shorter than eight characters must end in a “1” (one).

(UMBC accepts any number, but we’ve simplified it to just “1”.)

Your program must re-prompt the user until they provide a username that
satisfies all of the conditions above. It must also tell the user which of the
conditions they failed, and how to fix it. (See the sample output for an
example of this.)

(HINT: You should be able to build on what you had in Part 1. You should do
this program only after completing and fully testing your Part 1 program.)

(HINT: Think carefully about what your conditionals should look like. If
necessary, draw a truth table to help figure out what different inputs will do.)

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 6

Here is some sample output for hw4_part3.py, with the user input in blue.
(Yours does not have to match this exactly, but it should be similar.)

bash-4.1$ python hw4_part3.py

Please enter your username: d

Username is too short, it must be at least 2 characters.

Please enter a new username: dd

Usernames under 8 characters must end with a '1'

Please enter a new username: d1

Thank you for choosing the username d1

bash-4.1$ python hw4_part3.py

Please enter your username: short

Usernames under 8 characters must end with a '1'

Please enter a new username: short2

Usernames under 8 characters must end with a '1'

Please enter a new username: notShort

Thank you for choosing the username notShort

bash-4.1$ python hw4_part3.py

Please enter your username: wayTooLong

Username is too long, must be no longer than 8 characters.

Please enter a new username: notLong

Usernames under 8 characters must end with a '1'

Please enter a new username: notLong8

Thank you for choosing the username notLong8

(HINT: Pay careful attention when you are reading the sample output. Why is
each username accepted at the end?)

CMSC 201 – Computer Science I for Majors Page 7

hw4_part4.py (Worth 9 points)
Next, you are going to write code that simulates the up and down movement
of a hailstone in a storm.

Your program should ask the user for a positive integer, which will be the
starting height of the hailstone. Based on the current value of the height, you
will repeatedly do the following:

 If the current height is 1, quit the program

 If the current height is even, cut it in half (divide by 2)

 If the current height is odd, multiply it by 3, then add 1

Your program will keep updating the number, following the above rules, until
the number is 1. You should print out the height of the hailstone at each step.
Once the hailstone is at height 1, your program should end, and print out that
the hailstone stopped.

(HINT: Think carefully about the order in which your program checks each of
the conditions, or it won’t perform correctly.)

For example, given a starting value of 24, here are the numbers we output:
24 -> 12 -> 6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 8

Here is some sample output for hw4_part4.py, with the user input in blue.
(Yours does not have to match this exactly, but it should be similar.)

Please enter the starting height of the hailstone: 36

Hail is currently at height 36

Hail is currently at height 18

Hail is currently at height 9

Hail is currently at height 28

Hail is currently at height 14

Hail is currently at height 7

Hail is currently at height 22

Hail is currently at height 11

Hail is currently at height 34

Hail is currently at height 17

Hail is currently at height 52

Hail is currently at height 26

Hail is currently at height 13

Hail is currently at height 40

Hail is currently at height 20

Hail is currently at height 10

Hail is currently at height 5

Hail is currently at height 16

Hail is currently at height 8

Hail is currently at height 4

Hail is currently at height 2

Hail stopped at height 1

(HINT: If you want to prevent your program from outputting decimal numbers
like 6.0 and 3.0, you will need to use integer division.)

CMSC 201 – Computer Science I for Majors Page 9

Submitting

Once your hw4_part1.py, hw4_part2.py, hw4_part3.py, and

hw4_part4.py files are complete, it is time to turn them in with the submit

command. (You may turn in individual files as you complete them. To do so,
only submit those files that are complete.)

You must be logged into your GL account, and you must be in the same
directory as your Homework 4 python files. To double-check this, you can
type ls.

linux1[3]% ls

hw4_part1.py hw4_part2.py hw4_part3.py hw4_part4.py

linux1[4]% █

To submit your Homework 4 python files, we use the submit command,

where the class is cs201, and the assignment is HW4. Type in (all on one

line) submit cs201 HW4 hw4_part1.py hw4_part2.py

hw4_part3.py hw4_part4.py and press enter.

linux1[4]% submit cs201 HW4 hw4_part1.py hw4_part2.py

hw4_part3.py hw4_part4.py

Submitting hw4_part1.py...OK

Submitting hw4_part2.py...OK

Submitting hw4_part3.py...OK

Submitting hw4_part4.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your homework was submitted by following the directions
in Homework 0. Double-check that you submitted your homework correctly,
since an empty file will result in a grade of zero for this assignment.

